

The Iso-Seq Method for Human Diseases and Genome Annotation

Elizabeth Tseng/ June 2018

For Research Use Only. Not for use in diagnostics procedures. © Copyright 2018 by Pacific Biosciences of California, Inc. All rights reserved.

SLIDES WILL BE POSTED ON TWITTER (@MAGDOLL) AND SPEAKERDECK.COM/MAGDOLL

Google Group:

Google groups.google.com/forum/#!forum/SMRT_isoseq

GitHub Repository and Tutorials:

ISO-SEQ OVERVIEW

 Iso-Seq ("Isoform Sequencing") is the umbrella term of transcriptome sequencing using PacBio

- -Applications include:
 - -whole genome annotation
 - -isoform discovery
 - -fusion gene detection
 - -creating *de novo* reference transcripts for RNA-seq quantification

סאכן כל אכן כל אכן כל אכן כל אכן כל אכן כל אכי כ

SEQUEL ISO-SEQ LIBRARY PREPARATION

- -Simplified library preparation
- -Size selection optional

סאכן כל ארכין כל ארכי

OFFICIAL ISO-SEQ SOFTWARE SUPPORT

- -SMRT Analysis (command line) / SMRT Link (GUI)
 - -Latest Version: 5.1
 - -Link : http://www.pacb.com/support/software-downloads/

Main Features:

- -de novo (reference genome not required)
- -no assembly required
- -full-length (5' to 3')
- -high accuracy (>99%)

Iso-Seq Publications Highlight

אק כואכן כוארכן כוארכן כוארכן כוארכ

Wang et al., **Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing**, *Nat Comm* (2016)

PACBIO[®]

- First Iso-Seq application for whole genome annotation
- Multiplexed 6 different maize B73 tissues
- Obtained ~111k high-quality transcripts
- Vastly improved existing annotation and incorporated to MaizeGDB v4

Wang et al., **A comparative transcriptional landscape of maize and sorghum obtained by single-molecule sequencing**, *Genome Research* (2018)

- Iso-Seq sequencing of maize and sorghum
- Comparative analysis of conserved and differentiated alternative splicing

אק כואכן כו איכן כו איכן כו איכ

PACBIO°

Kuo et al., Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human. *BMC Genomics* (2017)

- Whole transcriptome sequencing of chicken
- Used 5' cap normalized Iso-Seq libraries
- Obtained ~60k high-quality transcripts (~29k genes)
- Identified > 20k potential IncRNAs

PACBIO

Cheng et al., **Long-read sequencing of the coffee bean transcriptome reveals the diversity of full-length transcripts.** *GigaScience* (2017)

- Obtained ~95k high-quality coffee bean transcripts
- Functional annotation using BLASTx, BLASTn, and BLAST2GO
- Identified new isoforms for caffeine-related genes

לאק כואכן כוא כן כוא כן כוא כ

Jia et al., SMRT sequencing of full-length transcriptome of flea beetle Agasicles hygrophila (Selman and Vogt). *Sci. Rep.* (2018)

Wang et al., **A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation.** *New Phytol* (2017)

PACBIO*

סאכן כו אכן כו אכן כו אכן כו אכן כו איכן איכן איכן איכ

COMPARATIVE GENOME + TRANSCRIPTOME SEQUENCING

- Human, Chimp, and Orangutan
- *de novo* genome assembly using PacBio
- Iso-Seq + RNA-Seq for annotation

- Improved genome contiguity by 30- to 500-fold
- 83% of ape genome now in multi-species alignment
- Systematic SV discovery (~600k in ape)
- Rare human-specific exonic deletion detected

סיק כל אכן כל איכ

CHIMP ASSEMBLY GREATLY IMPROVED

סיק כל יכן כל יכן כל יכן כל יכן ארמין כל יכן ארמין כל יכן ארמין כל י

CHIMP ASSEMBLY GREATLY IMPROVED

סאק כלא כן כלא כן כלא כן כלא כן כלא כ

HUMAN SPECIFIC DELETIONS DETECTED BY CROSS-SPECIES ISO-SEQ COMPARISON

סאק כלא כן כל איכן כל איכן כל איכן כל איכן כל איכ

HUMAN SPECIFIC DELETIONS DETECTED BY CROSS-SPECIES ISO-SEQ COMPARISON

ארק כל אכן כל אכן כל אכן כל אכן כל אכן כל אכן כל איכן כל איכן כל איכן כל איכן כל איכן איכן איכן איכן איכן איכן

HUMAN SPECIFIC DELETIONS DETECTED BY CROSS-SPECIES ISO-SEQ COMPARISON

human-specific deletion - 33 AA

62KB DELETION IN FADS2 CHANGES EXONIC USAGE

לאק כו אכן כו אכן כן איכן כן איכן כן איכן כ

PAC**BIO**°

62KB DELETION IN FADS2 CHANGES EXONIC USAGE

ס- כן כן כן כן כן כן כן כן כן ארכן כן כ

סאכן כל אכן כל איכ

CAT: COMPARATIVE ANNOTATION TOOLKIT

Comparative Annotation Toolkit (CAT) simultaneous clade and personal genome annotation

Ian T. Fiddes^{1,2}, Joel Armstrong^{1,8}, Mark Diekhans^{1,8}, Stefanie Nachtweide^{3,8}, Zev N. Kronenberg⁴, Jason G. Underwood^{4,5}, David Gordon^{4,6}, Dent Earl¹, Thomas Keane⁷, Evan E. Eichler^{4,6}, David Haussler¹, Mario Stanke³ and Benedict Paten¹

...[CAT] provides a flexible way to **simultaneously annotate entire clades and identify orthology relationships**...resulting discovery of novel genes, isoforms, and structural variants.... סאכן כל אכן כל איכ

ISO-SEQ PUBLICATIONS: HUMAN GENES AND DISEASES

Treutlein et al., **Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing**. *Proc Natl Acad Sci* (2014)

Anvar et al., Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing. *Genome Biol.* (2018)

Kohli et al., Androgen Receptor Variant AR-V9 Is Coexpressed with AR-V7 in Prostate Cancer Metastases and Predicts Abiraterone Resistance, *Clinical Cancer Research* (2017)

> Deveson et al., Universal Alternative Splicing of Noncoding Exons. Cell Systems (2018)

סאק כל אכן כל אכן כל אכן כל אכן כל אכן כל איכן כל איכ

Kohli et al., Androgen Receptor Variant AR-V9 Is Coexpressed with AR-V7 in Prostate Cancer Metastases and Predicts Abiraterone Resistance, *Clinical Cancer Research* (2017)

- AR-V7 is a known variant that prohibits successful therapy in castrationresistant prostate cancer
- RNA-seq data identified multiple AR variants, but unable to fully characterize
- Iso-Seq data identified AR-V9 often co-expressed with AR-V7
- Iso-Seq data re-annotated the cryptic exons CE3 and CE5 as a single 3' exon with different splice sites
- Clinical data showed high AR-V9 expression predictive of therapy resistance

ס-רק כל ארכן כ

ISO-SEQ HELPS SOLVE A RARE DISEASE

Aneichyk, T. *et al.* **Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly.** *Cell* (2018)

- X-linked Distonia-Parkinsonism (XDP) is a Mendelian neurodegenerative disease
- Endemic to Philippines Panay (6 in 100,000)
- Recent studies located causal variant in the TAF1 region on chrX
 - 5 single nucleotide variant (SNV)
 - 1 48-bp deletion
 - 1 2.6 kb SINE-VNTR-Alu (SVA) retrotransposon insertion

סאכן כל אכן כל איכ

ISO-SEQ HELPS SOLVE A RARE DISEASE

- First, de novo WGS to explore causal variants
 - Illumina + 10X
 - Long-insert jumping library (liWGS)
 - PacBio BAC cloning
 - Targeted capture of XDP region (CapSeq)
- Identified 47 additional new variants. Narrowed causal region down to TAF1 gene.

ISO-SEQ HELPS SOLVE A RARE DISEASE

אק כויכן כויכן יכן יכן יכ

PACBIO[®]

- Transcriptome sequencing on XDP and control cell lines
 - Strand-specific RNA-seq
 - mRNA targeted capture (Illumina)
 - mRNA targeted capture (PacBio Iso-Seq)

סאק כלא כן כלא כן כלא כן כלא כן כלא כ

ISO-SEQ DATA EXTENDS 5' END OF NOVEL ISOFORMS

סיכן כל איכן כל איכן כל איכן כל איכן כל איכן כל איכן כל איכ

ISO-SEQ DATA EXTENDS 5' END OF NOVEL ISOFORMS

סער ארבין כל ארבין כ

ISO-SEQ DATA EXTENDS 5' END OF NOVEL ISOFORMS

CRISPR/CAS9 CONFIRMED SVA LINKED TO INTRON RETENTION

PACBIO°

לא ליק כל יכן כל יכן כל יכן כל יכ

Iso-Phase

Using Iso-Seq data to phase isoforms

ISOPHASE: ISOFORM PHASING USING ISO-SEQ DATA

ALIGNMENT

SNP CA	
Position	SNPs
POS1	A, G
POS2	С, Т
POS3	С, А

ס- כן כל ארכן כל ארכ

PHASING

VCF OUTPUT

Can take optional RNA-seq input for SNP calling

##filef	ormat=VC	Fv4.	2						
#CHROM	POS ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	ISOFORM1	ISOFORM2
chr1	105 .	Α	G	•	PASS	DP=40;AF=0.50	GT:HQ	0 1:20,20	0:15
chr1	190 .	С	Т		PASS	DP=40;AF=0.50	GT:HQ	0 1:20,20	0:15
chr1	336 .	С	Α	•	PASS	DP=40;AF=0.50	GT:HQ	0 1:20,20	0:15

ANGUS X BRAHMAN F1 CATTLE

Genome Assembly

- Angus (sire) x Brahman (dam) F1 cattle
- PacBio, assembled with Falcon
- ~90% of genome phased using Unzip

Iso-Seq Transcriptome Data

- 30,137 final isoforms (12,101 genes)
- Selected for phasing: 1758 genes with \geq 40 full-length CCS read coverage

סאק כל ארכן כל

VPS36 ISOFORMS CALLED SNPS NOT PHASED IN GENOME

This gene (PB.1001, VPS36) contains 228 FL reads.

- Strong evidence for the 3 SNPs.
- Unzip did not phase this region so, are the SNPs supported by genome?

סאק כלא כן כל איכן כל איכן כל איכן כל איכ

VPS36 ISOFORMS CALLED SNPS NOT PHASED IN GENOME

The first SNP 000004F|arrow|arrow:48163477 (C->G) is supported in the pre-polish BAM file.

POTENTIAL A → G RNA EDITING IN COL1A1

CHROM	POS	REF	ALT	SNP IN GENOME?
000071F	7663000	Α	G	Ν
000071F	7671641	Т	С	Y

PB.8679 gene (COL1A1) contains a A \rightarrow G SNP not supported by genome. A single alternative contig (000071F_029) covers the whole region.

POTENTIAL ALLELE IMBALANCE FOR KIF3C GENE IN BRAIN

PACBIO*

- KIF3C is observed in brain only
- The SNP is in the 3' UTR region (A \rightarrow G) and is verified by genome
- The major isoform expresses the A allele more dominantly

Iso-Seq3 Preview

Ultra Fast + High Performance + Scalable

ISO-SEQ3 IMPROVEMENT

ISO-SEQ3 IS FAST

SAMPLE	SMRT CELLS	FL READS	CLASSIFY	CLUSTER	POLISH
RCO	1	182,211	19 sec	8 min	2.5 hr
RCO	3	568,541	1 min	21 min	11 hr
RCO	6	1,327,856	2 min	1 hr	3 hr per node (24 nodes)
RC0	10	2,038,060	3 min	2 hr	3 hr per node (24 nodes)
Mouse Liver	2	259,081	13 sec	4 min	4 hr

- RC0 = Universal Human Reference RNA (human) + Lexogen SIRV spike-in controls
- Not including CCS and Mapping runtime
- Computing configuration : 16 CPU / node
- Tested using command line

ס- כן כל ארכן כל ארכ

ISO-SEQ (1, 2, 3) GENERATE CONSISTENT RESULTS

RC0 3 Cells, Known Isoforms Only

* Only report FSM gene and isoforms

HOW MUCH SEQUENCING IS NEEDED?

CLASSIFIED GENES

www.pacb.com

For Research Use Only. Not for use in diagnostics procedures. © Copyright 2018 by Pacific Biosciences of California, Inc. All rights reserved. Pacific Biosciences, the Pacific Biosciences logo, PacBio, SMRT, SMRTbell, Iso-Seq, and Sequel are trademarks of Pacific Biosciences. BluePippin and SageELF are trademarks of Sage Science. NGS-go and NGSengine are trademarks of GenDx. FEMTO Pulse and Fragment Analyzer are trademarks of Advanced Analytical Technologies.

All other trademarks are the sole property of their respective owners.

Considerations for Sequencing Coverage

סאק כלא כן כל איכן כל איכן כל איכן כל איכן כל איכ

ISO-SEQ AT SEQUEL-SCALE

Targeted Genes:

- < 1 Sequel Cell</p>
- Multiplexing Recommended

Whole Transcriptome:

- 2 4 Sequel Cell
- Multiplexing Recommended

Tseng et al., Altered expression of the FMR1 splicing variants landscape in premutation carriers, to appear in BBA – Gene Regulatory Mechanisms (2017)

Wang et al., Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing, Nat Comm (2016)

סאכן כל אכן כל איכ

GENOME ANNOTATION AT SEQUEL SCALE

	NUMBER OF FL READS	NUMBER OF GENES	NUMBER OF ISOFORMS	Would be:
Maize	1,553,692	26,946	111,151	~6 Sequel Cell
Chicken	653,441	29,013	64,277	~3 Sequel Cell
Rabbit	466,034	14,474	36,186	~2 Sequel Cell
R. necatrix	330,373	> 5000	10,616	~2 Sequel Cell
Zebra Finch	405,736	7,228	17,437	Actual ~2 Sequel Cell

Wang et al., **Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing**, *Nat Comm* (2016) Kuo et al., **Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human**, *BMC Genomics* (2017) Chen et al., **A transcriptome atlas of rabbit revealed by PacBio single-molecule long-read sequencing**, *Sci Rep* (2017) Kim et al., **Characterization of the Rosellinia necatrix Transcriptome and Genes Related to Pathogenesis by Single-Molecule mRNA Sequencing**, *Plant Patho J* (2017)

סאכן כלא כין כלא כין כלא כין כלא כין כלא ארכין כ

HUMAN TRANSCRIPTS LENGTH DISTRIBUTION

ארק כל אכן כל איכ

USE SQANTI* TO EVALUATE ISO-SEQ3 RESULTS

*SQANTI is a community tool developed by Conesa lab

- Full Splice Match, matches reference perfectly.
 - Incomplete Splice Matches, matches reference partially
 - Novel In Catalog, novel isoform using known junctions
- **IC** Novel Not in Catalog, novel isoforms using novel junctions.

Genic Intron	within intron
Genic Genomic	Overlap with intron and exons

Tardaguila, M. *et al.* SQANTI: extensive characterization of long read transcript sequences for quality control in full-length transcriptome identification and quantification. 1–31 (2017). doi:10.1101/118083

סאכן כל אכן כל איכ

ISO-SEQ3 VS REF ANNOTATION: HUMAN

RC0 3 CELL (HUMAN)

■Iso-Seq1 ■Iso-Seq2 ■Iso-Seq3

SQANTI: compare Iso-Seq results vs Gencode v27 Reference Gene Annotation

о и Го Го и Го Го и Го риб 秒 РАС**ВЮ**°

HOW MUCH SEQUENCING IS NEEDED?

CLASSIFIED GENES

Known Genes Novel Genes

■FSM ■ISM ■NIC ■NNC